EBAU Valencia 2017

1A.- Dadas dos circunferencias de centros, O1 y O2, dibuje todas las circunferencias tangentes a ambas por el punto de tangencia T1 dado. Indique los centros y los puntos de tangencia.
2A.- Dadas las rectas t y r, determine la circunferencia de radio 30 mm que sea tangente a la recta r, y la recta t sea secante a la circunferencia según un segmento (cuerda) de 40 mm.
3A.- Dados del plano alfa, su traza horizontal y su traza abatida y dada la proyección abatida del punto A y la proyección horizontal del punto B y sabiendo que A y B pertenecen a alfa obtenga las proyecciones  horizontal, vertical y abatida del triángulo equilátero ABC horizontal, vertical y abatida del triángulo equilátero ABC ontenido en ? y en el primer cuadrante.
4A.- Dados el alzado, la planta y la vista lateral izquierda a escala 3:4 de una pieza, obtenga el dibujo isométrico de la misma a escala 1:1. Tome las medidas directamente de la figura. Se valorará el uso de escala gráfica.
1B.- Dados el eje y la dirección de afinidad, represente la figura afín del triángulo ABC del cual se conocen los vértices A y B y su baricentro O. Se sabe además que el triángulo afín A´B´C´ es rectángulo en el vértice C´.
3B.- Dadas las rectas t y r, trazar un plano alfa perpendicular a las dos rectas por un punto cualquiera del primer cuadrante, Determine en proyección y en verdadera magnitud la mínima entre t  y r.

Comentarios

Entradas populares de este blog

Problemas de tangencias, Apolonio , casos CCC, PCC, RCC, RRC, PRC, RPR

Pruebas Acceso Universidad (PAU) Madrid

Índice General Problemas